Combining Quantitative Genetics Approaches with Regulatory Network Analysis to Dissect the Complex Metabolism of the Maize Kernel.
نویسندگان
چکیده
Metabolic quantitative trait locus (QTL) studies have allowed us to better understand the genetic architecture underlying naturally occurring plant metabolic variance. Here, we use two recombinant inbred line (RIL) populations to dissect the genetic architecture of natural variation of 155 metabolites measured in the mature maize (Zea mays) kernel. Overall, linkage mapping identified 882 metabolic QTLs in both RIL populations across two environments, with an average of 2.1 QTLs per metabolite. A large number of metabolic QTLs (more than 65%) were identified with moderate effects (r(2) = 2.1%-10%), while a small portion (less than 35%) showed major effects (r(2) > 10%). Epistatic interactions between these identified loci were detected for more than 30% of metabolites (with the proportion of phenotypic variance ranging from 1.6% to 37.8%), implying that genetic epistasis is not negligible in determining metabolic variation. In total, 57 QTLs were validated by our previous genome-wide association study on the same metabolites that provided clues for exploring the underlying genes. A gene regulatory network associated with the flavonoid metabolic pathway was constructed based on the transcriptional variations of 28,769 genes in kernels (15 d after pollination) of 368 maize inbred lines. A large number of genes (34 of 58) in this network overlapped with previously defined genes controlled by maize PERICARP COLOR1, while three of them were identified here within QTL intervals for multiple flavonoids. The deeply characterized RIL populations, elucidation of metabolic phenotypes, and identification of candidate genes lay the foundation for maize quality improvement.
منابع مشابه
Network-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes
Identification of genes involved in salinity stress tolerance provides deeper insight into molecular mechanisms underlying salinity tolerance in maize. The present study was conducted in the faculty of agriculture of Urmia university, Iran, in 2018, with the aim of identifying genetic differences between two maize genotypes in tolerance to salinity stress, and the results of gene expression wer...
متن کاملBioinformatics Identification of miRNA-mRNA Regulatory Network Contributing Primary Lung Cancer
Introduction: In clinical practice, distinguishing invasive lung tumors from primary tumors remains a challenge. With recent advances in understanding biological alterations of tumorigenesis and molecular analytic technologies, using these molecular alterations can be sensitive and tumor-specific as biomarker for the stratification of patients. In this study, the molecular network of miRNA-mRNA...
متن کاملKey Genes Involved in Wheat Response to Salinity Stress and Mapping their Gene Network
Extended Abstract Introduction and Objective: Considering the importance of salinity in wheat and the multigene nature of this trait, the present study was conducted to investigate the expression of key genes involved in the response of wheat to this stress and to create their network. Material and Methods: In this study, the expression of key genes (HKT, DREB, bZIP, NAC, and WARKY) involved...
متن کاملLink Prediction using Network Embedding based on Global Similarity
Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...
متن کاملComparison of MLP NN Approach with PCA and ICA for Extraction of Hidden Regulatory Signals in Biological Networks
The biologists now face with the masses of high dimensional datasets generated from various high-throughput technologies, which are outputs of complex inter-connected biological networks at different levels driven by a number of hidden regulatory signals. So far, many computational and statistical methods such as PCA and ICA have been employed for computing low-dimensional or hidden represe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 170 1 شماره
صفحات -
تاریخ انتشار 2016